24 research outputs found

    Challenges of achieving good environmental status in the Northeast Atlantic

    Get PDF
    The sustainable exploitation of marine ecosystem services is dependent on achieving and maintaining an adequate ecosystem state to prevent undue deterioration. Within the European Union, the Marine Strategy Framework Directive (MSFD) requires member states to achieve Good Environmental Status (GEnS), specified in terms of 11 descriptors. We analyzed the complexity of social-ecological factors to identify common critical issues that are likely to influence the achievement of GEnS in the Northeast Atlantic (NEA) more broadly, using three case studies. A conceptual model developed using a soft systems approach highlights the complexity of social and ecological phenomena that influence, and are likely to continue to influence, the state of ecosystems in the NEA. The development of the conceptual model raised four issues that complicate the implementation of the MSFD, the majority of which arose in the Pressures and State sections of the model: variability in the system, cumulative effects, ecosystem resilience, and conflicting policy targets. The achievement of GEnS targets for the marine environment requires the recognition and negotiation of trade-offs across a broad policy landscape involving a wide variety of stakeholders in the public and private sectors. Furthermore, potential cumulative effects may introduce uncertainty, particularly in selecting appropriate management measures. There also are endogenous pressures that society cannot control. This uncertainty is even more obvious when variability within the system, e.g., climate change, is accounted for. Also, questions related to the resilience of the affected ecosystem to specific pressures must be raised, despite a lack of current knowledge. Achieving good management and reaching GEnS require multidisciplinary assessments. The soft systems approach provides one mechanism for bringing multidisciplinary information together to look at the problems in a different light

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: A community perspective

    Get PDF
    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary

    Modeling water quality in the Anthropocene : directions for the next-generation aquatic ecosystem models

    Get PDF
    “Everything changes and nothing stands still” (Heraclitus). Here we review three major improvements to freshwater aquatic ecosystem models — and ecological models in general — as water quality scenario analysis tools towards a sustainable future. To tackle the rapid and deeply connected dynamics characteristic of the Anthropocene, we argue for the inclusion of eco-evolutionary, novel ecosystem and social-ecological dynamics. These dynamics arise from adaptive responses in organisms and ecosystems to global environmental change and act at different integration levels and different time scales. We provide reasons and means to incorporate each improvement into aquatic ecosystem models. Throughout this study we refer to Lake Victoria as a microcosm of the evolving novel social-ecological systems of the Anthropocene. The Lake Victoria case clearly shows how interlinked eco-evolutionary, novel ecosystem and social-ecological dynamics are, and demonstrates the need for transdisciplinary research approaches towards global sustainability. Highlights • We present a research agenda to enhance water quality modeling in the Anthropocene. • We review adaptive responses in organisms and ecosystems to global environmental change. • We focus on eco-evolutionary, novel ecosystem and social-ecological dynamics. • These dynamics act at different integration levels and different time scales. • Lake Victoria is an iconic example of an evolving novel social-ecological system

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    Get PDF

    Exploring the Trophic Spectrum: Placing Mixoplankton Into Marine Protist Communities of the Southern North Sea

    No full text
    While traditional microplankton community assessments focus primarily on phytoplankton and protozooplankton, the last decade has witnessed a growing recognition of photo-phago mixotrophy (performed by mixoplankton) as an important nutritional route among plankton. However, the trophic classification of plankton and subsequent analysis of the trophic composition of plankton communities is often subjected to the historical dichotomy. We circumvented this historical dichotomy by employing a 24 year-long time series on abiotic and protist data to explore the trophic composition of protist communities in the Southern North Sea. In total, we studied three different classifications. Classification A employed our current knowledge by labeling only taxa documented to be mixoplankton as such. In a first trophic proposal (classification B), documented mixoplankton and all phototrophic taxa (except for diatoms, cyanobacteria, and colonial Phaeocystis) were classified as mixoplankton. In a second trophic proposal (classification C), documented mixoplankton as well as motile, phototrophic taxa associated in a principle component analysis with documented mixoplankton were classified as mixoplankton. In all three classifications, mixoplankton occurred most in the inorganic nutrient-depleted, seasonally stratified environments. While classification A was still subjected to the traditional dichotomy and underestimated the amount of mixoplankton, our results indicate that classification B overestimated the amount of mixoplankton. Classification C combined knowledge gained from the other two classifications and resulted in a plausible trophic composition of the protist community. Using results of classification C, our study provides a list of potential unrecognized mixoplankton in the Southern North Sea. Furthermore, our study suggests that low turbidity and the maturity of an ecosystem, quantified using a newly proposed index of ecosystem maturity (ratio of organic to total nitrogen), provide an indication on the relevance of mixoplankton in marine protist communities.</p

    Do microplastics affect marine ecosystem productivity?

    No full text
    Marine and coastal ecosystems are among the largest contributors to the Earth's productivity. Experimental studies have shown negative impacts of microplastics on individual algae or zooplankton organisms. Consequently, primary and secondary productivity may be negatively affected as well. In this study we attempted to estimate the impacts on productivity at ecosystem level based on reported laboratory findings with a modelling approach, using our biogeochemical model for the North Sea (Delft3D-GEM). Although the model predicted that microplastics do not affect the total primary or secondary production of the North Sea as a whole, the spatial patterns of secondary production were altered, showing local changes of ±10%. However, relevant field data on microplastics are scarce, and strong assumptions were required to include the plastic concentrations and their impacts under field conditions into the model. These assumptions reveal the main knowledge gaps that have to be resolved to improve the first estimate above

    Repeatable sediment associations of burrowing bivalves across six European tidal flat systems

    Get PDF
    Burrowing bivalves are associated with particular sediment types within sedimentary systems. The degree to which bivalve sediment associations are repeatable across systems has seldom been investigated. To investigate whether such repeatability exists across tidal flats, we compared adult and juvenile distributions of 3 bivalve species (Cerastoderma edule, Scrobicularia plana, Macoma balthica) across 6 European tidal flats. Across systems, the adult bivalves showed fairly repeatable distributions, with C. edule occurring in sandy sediments and M. balthica and S. plana occurring in muddy sediments. Exceptions were observed in systems composed primarily of muddy sediments (Aiguillon Bay and Marennes-Oléron Bay) and the Dutch Wadden Sea. Interestingly, juveniles and adults of C. edule and S. plana showed similar distributions across systems. M. balthica juveniles and adults showed habitat separation in 3 of the 6 studied systems; in 2 of these, it has been shown previously that juvenile M. balthica settle in mud at high tidal levels and migrate to lower sandier flats later in life. The high occurrence of juvenile M. balthica towards high sandy flats in Mont Saint-Michel Bay suggests that juveniles might choose high tidal flats rather than muddy sediments per se. A repeatable association in adults and juveniles with respect to sediment could suggest that juveniles actively settle in the proximity of the adults and/or that juveniles settling away from the adults incur a higher mortality due to either predation, physiological stress, or other factors.
    corecore